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An Introduction to Set Theory

The origin of the modern theory of sets can be traced back to the Russian-born
Ž .German mathematician Georg Cantor 1845�1918 . This chapter introduces

the basic elements of this theory.

1.1. THE CONCEPT OF A SET

A set is any collection of well-defined and distinguishable objects. These
objects are called the elements, or members, of the set and are denoted by
lowercase letters. Thus a set can be perceived as a collection of elements
united into a single entity. Georg Cantor stressed this in the following words:
‘‘A set is a multitude conceived of by us as a one.’’

If x is an element of a set A, then this fact is denoted by writing xgA.
If, however, x is not an element of A, then we write x�A. Curly brackets
are usually used to describe the contents of a set. For example, if a set A
consists of the elements x , x , . . . , x , then it can be represented as As1 2 n
� 4x , x , . . . , x . In the event membership in a set is determined by the1 2 n
satisfaction of a certain property or a relationship, then the description of the
same can be given within the curly brackets. For example, if A consists of all

2 � � 2 4real numbers x such that x �1, then it can be expressed as As x x �1 ,
�where the bar is used simply to mean ‘‘such that.’’ The definition of sets in

this manner is based on the axiom of abstraction, which states that given any
property, there exists a set whose elements are just those entities having that
property.

Definition 1.1.1. The set that contains no elements is called the empty set
and is denoted by �. �

Definition 1.1.2. A set A is a subset of another set B, written symboli-
cally as A;B, if every element of A is an element of B. If B contains at
least one element that is not in A, then A is said to be a proper subset of B.

�

1



AN INTRODUCTION TO SET THEORY2

Definition 1.1.3. A set A and a set B are equal if A;B and B;A.
Thus, every element of A is an element of B and vice versa. �

Definition 1.1.4. The set that contains all sets under consideration in a
certain study is called the universal set and is denoted by �. �

1.2. SET OPERATIONS

There are two basic operations for sets that produce new sets from existing
ones. They are the operations of union and intersection.

Definition 1.2.1. The union of two sets A and B, denoted by AjB, is
the set of elements that belong to either A or B, that is,

�� 4AjBs x xgA or xgB . �

This definition can be extended to more than two sets. For example, if
A , A , . . . , A are n given sets, then their union, denoted by � n A , is a set1 2 n is1 i
such that x is an element of it if and only if x belongs to at least one of the

Ž .A is1, 2, . . . , n .i

Definition 1.2.2. The intersection of two sets A and B, denoted by
AlB, is the set of elements that belong to both A and B. Thus

�� 4AlBs x xgA and xgB . �

This definition can also be extended to more than two sets. As before, if
A , A , . . . , A are n given sets, then their intersection, denoted by � n A ,1 2 n is1 i

Ž .is the set consisting of all elements that belong to all the A is1, 2, . . . , n .i

Definition 1.2.3. Two sets A and B are disjoint if their intersection is the
empty set, that is, AlBs�. �

Definition 1.2.4. The complement of a set A, denoted by A, is the set
consisting of all elements in the universal set that do not belong to A. In
other words, xgA if and only if x�A.

The complement of A with respect to a set B is the set ByA which
consists of the elements of B that do not belong to A. This complement is
called the relative complement of A with respect to B. �

From Definitions 1.1.1�1.1.4 and 1.2.1�1.2.4, the following results can be
concluded:

RESULT 1.2.1. The empty set � is a subset of every set. To show this,
suppose that A is any set. If it is false that �;A, then there must be an
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element in � which is not in A. But this is not possible, since � is empty. It
is therefore true that �;A.

RESULT 1.2.2. The empty set � is unique. To prove this, suppose that �1
and � are two empty sets. Then, by the previous result, � ;� and2 1 2
� G� . Hence, � s� .2 1 1 2

RESULT 1.2.3. The complement of � is �. Vice versa, the complement
of � is �.

RESULT 1.2.4. The complement of A is A.

RESULT 1.2.5. For any set A, AjAs� and AlAs�.

RESULT 1.2.6. AyBsAyAlB.

Ž . Ž .RESULT 1.2.7. Aj BjC s AjB jC.

Ž . Ž .RESULT 1.2.8. Al BlC s AlB lC.

Ž . Ž . Ž .RESULT 1.2.9. Aj BlC s AjB l AjC .

Ž . Ž . Ž .RESULT 1.2.10. Al BjC s AlB j AlC .

n nRESULT 1.2.11. AjB sAlB. More generally, � A s� A .Ž . is1 i is1 i

n nRESULT 1.2.12. AlB sAjB. More generally, � A s� A .Ž . is1 i is1 i

Definition 1.2.5. Let A and B be two sets. Their Cartesian product,
Ž .denoted by A�B, is the set of all ordered pairs a, b such that agA and

bgB, that is,

�A�Bs a, b agA and bgB .� 4Ž .

The word ‘‘ordered’’ means that if a and c are elements in A and b and d
Ž . Ž .are elements in B, then a, b s c, d if and only if asc and bsd. �

The preceding definition can be extended to more than two sets. For
example, if A , A , . . . , A are n given sets, then their Cartesian product is1 2 n
denoted by �n A and defined byiis1

n

A s a , a , . . . , a a gA , is1, 2, . . . , n .� 4Ž .� i 1 2 n i i
is1
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Ž .Here, a , a , . . . , a , called an ordered n-tuple, represents a generaliza-1 2 n
tion of the ordered pair. In particular, if the A are equal to A fori
is1, 2, . . . , n, then one writes An for �n A.is1

The following results can be easily verified:

RESULT 1.2.13. A�Bs� if and only if As� or Bs�.

Ž . Ž . Ž .RESULT 1.2.14. AjB �Cs A�C j B�C .

Ž . Ž . Ž .RESULT 1.2.15. AlB �Cs A�C l B�C .

Ž . Ž . Ž . Ž .RESULT 1.2.16. A�B l C�D s AlC � BlD .

1.3. RELATIONS AND FUNCTIONS

Let A�B be the Cartesian product of two sets, A and B.

Definition 1.3.1. A relations � from A to B is a subset of A�B, that is,
Ž .� consists of ordered pairs a, b such that agA and bgB. In particular, if

AsB, then � is said to be a relation in A.
� 4 � 4 �Ž . �For example, if As 7, 8, 9 and Bs 7, 8, 9, 10 , then �s a, b a�b,

4agA, bgB is a relation from A to B that consists of the six ordered pairs
Ž . Ž . Ž . Ž . Ž . Ž .7, 8 , 7, 9 , 7, 10 , 8, 9 , 8, 10 , and 9, 10 .

Ž .Whenever � is a relation and x, y g�, then x and y are said to be
�-related. This is denoted by writing x � y. �

Definition 1.3.2. A relation � in a set A is an equivalence relation if the
following properties are satisfied:

1. � is reflexive, that is, a� a for any a in A.
2. � is symmetric, that is, if a� b, then b� a for any a, b in A.
3. � is transitive, that is, if a� b and b� c, then a� c for any a, b, c in A.

If � is an equivalence relation in a set A, then for a given a in A, the set0

�C a s agA a � a ,� 4Ž .0 0

which consists of all elements of A that are �-related to a , is called an0
equivalence class of a . �0

Ž .RESULT 1.3.1. agC a for any a in A. Thus each element of A is an
element of an equivalence class.
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Ž . Ž .RESULT 1.3.2. If C a and C a are two equivalence classes, then1 2
Ž . Ž . Ž . Ž .either C a sC a , or C a and C a are disjoint subsets.1 2 1 2

It follows from Results 1.3.1 and 1.3.2 that if A is a nonempty set, the
collection of distinct �-equivalence classes of A forms a partition of A.

As an example of an equivalence relation, consider that a � b if and only if
a and b are integers such that ayb is divisible by a nonzero integer n. This
is the relation of congruence modulo n in the set of integers and is written

Ž . Ž .symbolically as a�b mod n . Clearly, a�a mod n , since ayas0 is
Ž . Ž .divisible by n. Also, if a�b mod n , then b�a mod n , since if ayb is

Ž .divisible by n, then so is bya. Furthermore, if a�b mod n and b�c
Ž . Ž .mod n , then a�c mod n . This is true because if ayb and byc are both

Ž . Ž .divisible by n, then so is ayb q byc sayc. Now, if a is a given0
integer, then a �-equivalence class of a consists of all integers that can be0

Ž .written as asa qkn, where k is an integer. This in this example C a is0 0
� � 4the set a qkn kgJ , where J denotes the set of all integers.0

Definition 1.3.3. Let � be a relation from A to B. Suppose that � has
the property that for all x in A, if x� y and x� z, where y and z are elements
in B, then ysz. Such a relation is called a function. �

Thus a function is a relation � such that any two elements in B that are
�-related to the same x in A must be identical. In other words, to each
element x in A, there corresponds only one element y in B. We call y the

Ž .value of the function at x and denote it by writing ys f x . The set A is
Ž .called the domain of the function f , and the set of all values of f x for x in

A is called the range of f , or the image of A under f , and is denoted by
Ž .f A . In this case, we say that f is a function, or a mapping, from A into B.

Ž .We express this fact by writing f : A™B. Note that f A is a subset of B. In
Ž .particular, if Bs f A , then f is said to be a function from A onto B. In this

case, every element b in B has a corresponding element a in A such that
Ž .bs f a .

Definition 1.3.4. A function f defined on a set A is said to be a
Ž . Ž .one-to-one function if whenever f x s f x for x , x in A, one has1 2 1 2

x sx . Equivalently, f is a one-to-one function if whenever x �x , one has1 2 1 2
Ž . Ž .f x � f x . �1 2

Ž .Thus a function f : A™B is one-to-one if to each y in f A , there
Ž .corresponds only one element x in A such that ys f x . In particular, if f is

a one-to-one and onto function, then it is said to provide a one-to-one
correspondence between A and B. In this case, the sets A and B are said to
be equivalent. This fact is denoted by writing A�B.

Note that whenever A�B, there is a function g : B™A such that if
Ž . Ž .ys f x , then xsg y . The function g is called the inverse function of f and
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is denoted by fy1. It is easy to see that A�B defines an equivalence
relation. Properties 1 and 2 in Definition 1.3.2 are obviously true here. As for
property 3, if A, B, and C are sets such that A�B and B�C, then A�C.
To show this, let f : A™B and h: B™C be one-to-one and onto functions.

Ž . w Ž .xThen, the composite function h� f , where h� f x sh f x , defines a one-
to-one correspondence between A and C.

EXAMPLE 1.3.1. The relation a� b, where a and b are real numbers such
2 Ž .that asb , is not a function. This is true because both pairs a, b and

Ž .a,yb belong to �.

EXAMPLE 1.3.2. The relation a� b, where a and b are real numbers such
that bs2 a2q1, is a function, since for each a, there is only one b that is
�-related to a.

� � 4 � � 4EXAMPLE 1.3.3. Let A s x y1 F x F 1 , B s x 0 F x F 2 . Define
Ž . 2f : A™B such that f x sx . Here, f is a function, but is not one-to-one

Ž . Ž .because f 1 s f y1 s1. Also, f does not map A onto B, since ys2 has no
corresponding x in A such that x 2s2.

EXAMPLE 1.3.4. Consider the relation x � y, where ysarcsin x, y1F
xF1. Here, y is an angle measured in radians whose sine is x. Since there
are infinitely many angles with the same sine, � is not a function. However, if

� � 4we restrict the range of y to the set Bs y y�r2FyF�r2 , then �
becomes a function, which is also one-to-one and onto. This function is the
inverse of the sine function xssin y. We refer to the values of y that belong
to the set B as the principal values of arcsin x, which we denote by writing
ysArcsin x. Note that other functions could have also been defined from
the arcsine relation. For example, if �r2FyF3�r2, then xssin ysysin z,
where zsyy� . Since y�r2FzF�r2, then zsyArcsin x. Thus ys

� � 4�yArcsin x maps the set As x y1FxF1 in a one-to-one manner onto
� � 4the set Cs y �r2FyF3�r2 .

1.4. FINITE, COUNTABLE, AND UNCOUNTABLE SETS

� 4Let J s 1, 2, . . . , n be a set consisting of the first n positive integers, and letn
Jq denote the set of all positive integers.

Definition 1.4.1. A set A is said to be:

1. Finite if A�J for some positive integer n.n

2. Countable if A�Jq. In this case, the set Jq, or any other set equiva-
lent to it, can be used as an index set for A, that is, the elements of A

Ž . qare assigned distinct indices subscripts that belong to J . Hence,
� 4A can be represented as As a , a , . . . , a , . . . .1 2 n
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3. Uncountable if A is neither finite nor countable. In this case, the
elements of A cannot be indexed by J for any n, or by Jq. �n

� 2 4EXAMPLE 1.4.1. Let As 1, 4, 9, . . . , n , . . . . This set is countable, since
q Ž . 2the function f : J ™A defined by f n sn is one-to-one and onto. Hence,

A�Jq.

EXAMPLE 1.4.2. Let AsJ be the set of all integers. Then A is count-
able. To show this, consider the function f : Jq™A defined by

nq1 r2, n odd,Ž .
f n sŽ . ½ 2yn r2, n even.Ž .

It can be verified that f is one-to-one and onto. Hence, A�Jq.

� � 4EXAMPLE 1.4.3. Let As x 0FxF1 . This set is uncountable. To show
this, suppose that there exists a one-to-one correspondence between Jq and

� 4A. We can then write As a , a , . . . , a , . . . . Let the digit in the nth decimal1 2 n
Ž .place of a be denoted by b ns1, 2, . . . . Define a number c as cs0 �c cn n 1 2

��� c ��� such that for each n, c s1 if b �1 and c s2 if b s1. Now, cn n n n n
belongs to A, since 0FcF1. However, by construction, c is different from

Ž .every a in at least one decimal digit is1, 2, . . . and hence c�A, which is ai
contradiction. Therefore, A is not countable. Since A is not finite either,
then it must be uncountable.

This result implies that any subset of R, the set of real numbers, that
contains A, or is equivalent to it, must be uncountable. In particular, R is
uncountable.

Theorem 1.4.1. Every infinite subset of a countable set is countable.

Proof. Let A be a countable set, and B be an infinite subset of A. Then
� 4As a , a , . . . , a , . . . , where the a ’s are distinct elements. Let n be the1 2 n i 1

smallest positive integer such that a gB. Let n �n be the next smallestn 2 11

integer such that a gB. In general, if n �n � ��� �n have beenn 1 2 ky12

chosen, let n be the smallest integer greater than n such that a gB.k ky1 nk
q Ž .Define the function f : J ™B such that f k sa , ks1, 2, . . . . This func-nk

tion is one-to-one and onto. Hence, B is countable. �

Theorem 1.4.2. The union of two countable sets is countable.

Proof. Let A and B be countable sets. Then they can be represented as
� 4 � 4As a , a , . . . , a , . . . , Bs b , b , . . . , b , . . . . Define CsAjB. Consider1 2 n 1 2 n

the following two cases:

i. A and B are disjoint.
ii. A and B are not disjoint.
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� 4In case i, let us write C as Cs a , b , a , b , . . . , a , b , . . . . Consider the1 1 2 2 n n
function f : Jq™C such that

a , n odd,Žnq1.r2
f n sŽ . ½ b , n even.nr2

It can be verified that f is one-to-one and onto. Hence, C is countable.
Let us now consider case ii. If AlB��, then some elements of C,

namely those in AlB, will appear twice. Hence, there exists a set E;Jq

such that E�C. Thus C is either finite or countable. Since C>A and A is
infinite, C must be countable. �

Corollary 1.4.1. If A , A , . . . , A , . . . , are countable sets, then �� A1 2 n is1 i
is countable.

Proof. The proof is left as an exercise. �

Theorem 1.4.3. Let A and B be two countable sets. Then their Cartesian
product A�B is countable.

Ž 4Proof. Let us write A as As a , a , . . . , a , . . . . For a given agA,1 2 n
Ž .define a, B as the set

�a, B s a, b bgB .� 4Ž . Ž .

Ž . Ž .Then a, B �B and hence a, B is countable.
However,

�

A�Bs a , B .Ž .� i
is1

Thus by Corollary 1.4.1, A�B is countable. �

Corollary 1.4.2. If A , A , . . . , A are countable sets, then their Carte-1 2 n
sian product �n A is countable.iis1

Proof. The proof is left as an exercise. �

Corollary 1.4.3. The set Q of all rational numbers is countable.

Proof. By definition, a rational number is a number of the form mrn,
˜where m and n are integers with n�0. Thus Q�Q, where

˜ �Qs m , n m , n are integers and n�0 .� 4Ž .
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˜Since Q is an infinite subset of J�J, where J is the set of all integers, which
is countable as was seen in Example 1.4.2, then by Theorems 1.4.1 and 1.4.3,
Q̃ is countable and so is Q. �

REMARK 1.4.1. Any real number that cannot be expressed as a rational
'number is called an irrational number. For example, 2 is an irrational

number. To show this, suppose that there exist integers, m and n, such that
'2 smrn. We may consider that mrn is written in its lowest terms, that is,
m and n have no common factors other than unity. In particular, m and n,
cannot both be even. Now, m2s2n2. This implies that m2 is even. Hence, m
is even and can therefore be written as ms2m�. It follows that n2sm2r2s
2m�2. Consequently, n2, and hence n, is even. This contradicts the fact that

'm and n are not both even. Thus 2 must be an irrational number.

1.5. BOUNDED SETS

Let us consider the set R of real numbers.

Definition 1.5.1. A set A;R is said to be:

1. Bounded from above if there exists a number q such that xFq for all
x in A. This number is called an upper bound of A.

2. Bounded from below if there exists a number p such that xGp for all
x in A. The number p is called a lower bound of A.

3. Bounded if A has an upper bound q and a lower bound p. In this case,
there exists a nonnegative number r such that yrFxF r for all x in

Ž � � � � .A. This number is equal to max p , q . �

Definition 1.5.2. Let A;R be a set bounded from above. If there exists
a number l that is an upper bound of A and is less than or equal to any
other upper bound of A, then l is called the least upper bound of A and is

Ž . Ž .denoted by lub A . Another name for lub A is the supremum of A and is
Ž .denoted by sup A . �

Definition 1.5.3. Let A;R be a set bounded from below. If there exists
a number g that is a lower bound of A and is greater than or equal to any
other lower bound of A, then g is called the greatest lower bound and is

Ž . Ž .denoted by glb A . The infimum of A, denoted by inf A , is another name
Ž .for glb A . �

The least upper bound of A, if it exists, is unique, but it may or may not
Ž .belong to A. The same is true for glb A . The proof of the following theorem
Ž .is omitted and can be found in Rudin 1964, Theorem 1.36 .



AN INTRODUCTION TO SET THEORY10

Theorem 1.5.1. Let A;R be a nonempty set.

Ž .1. If A is bounded from above, then lub A exists.
Ž .2. If A is bounded from below, then glb A exists.

� � 4 Ž .EXAMPLE 1.5.1. Let As x x�0 . Then lub A s0, which does not
belong to A.

� � 4 Ž . Ž .EXAMPLE 1.5.2. Let As 1rn ns1, 2, . . . . Then lub A s1 and glb A
Ž . Ž .s0. In this case, lub A belongs to A, but glb A does not.

1.6. SOME BASIC TOPOLOGICAL CONCEPTS

The field of topology is an abstract study that evolved as an independent
discipline in response to certain problems in classical analysis and geometry.
It provides a unifying theory that can be used in many diverse branches of
mathematics. In this section, we present a brief account of some basic
definitions and results in the so-called point-set topology.

� 4Definition 1.6.1. Let A be a set, and let FFs B be a family of subsets�

of A. Then FF is a topology in A if it satisfies the following properties:

1. The union of any number of members of FF is also a member of FF.
2. The intersection of a finite number of members of FF is also a member

of FF.
3. Both A and the empty set � are members of FF. �

Ž .Definition 1.6.2. Let FF be a topology in a set A. Then the pair A, FF is
called a topological space. �

Ž .Definition 1.6.3. Let A, FF be a topological space. Then the members of
FF are called the open sets of the topology FF. �

Ž .Definition 1.6.4. Let A, FF be a topological space. A neighborhood of a
Ž .point pgA is any open set that is, a member of FF that contains p. In

particular, if AsR, the set of real numbers, then a neighborhood of pgR
Ž . � � � � 4is an open set of the form N p s q qyp � r for some r�0. �r

Ž . � 4Definition 1.6.5. Let A, FF be a topological space. A family Gs B ;FF�

Ž .is called a basis for FF if each open set that is, member of FF is the union of
members of G. �

On the basis of this definition, it is easy to prove the following theorem.
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Ž .Theorem 1.6.1. Let A, FF be a topological space, and let G be a basis
Ž .for FF. Then a set B;A is open that is, a member of FF if and only if for

each pgB, there is a UgG such that pgU;B.

� Ž . � 4For example, if AsR, then Gs N p pgR, r�0 is a basis for ther
topology in R. It follows that a set B;R is open if for every point p in B,

Ž . Ž .there exists a neighborhood N p such that N p ;B.r r

Ž .Definition 1.6.6. Let A, FF be a topological space. A set B;A is closed
if B, the complement of B with respect to A, is an open set. �

Ž .It is easy to show that closed sets of a topological space A, FF satisfy the
following properties:

1. The intersection of any number of closed sets is closed.
2. The union of a finite number of closed sets is closed.
3. Both A and the empty set � are closed.

Ž .Definition 1.6.7. Let A, FF be a topological space. A point pgA is said
to be a limit point of a set B;A if every neighborhood of p contains at least

Ž .one element of B distinct from p. Thus, if U p is any neighborhood of p,
Ž .then U p lB is a nonempty set that contains at least one element besides

p. In particular, if AsR, the set of real numbers, then p is a limit point of a
Ž . w � 4x � 4set B;R if for any r�0, N p l By p ��, where p denotes a setr

consisting of just p. �

Theorem 1.6.2. Let p be a limit point of a set B;R. Then every
neighborhood of p contains infinitely many points of B.

Proof. The proof is left to the reader. �

The next theorem is a fundamental theorem in set theory. It is originally
Ž .due to Bernhard Bolzano 1781�1848 , though its importance was first

Ž .recognized by Karl Weierstrass 1815�1897 . The proof is omitted and can be
Ž .found, for example, in Zaring 1967, Theorem 4.62 .

Ž .Theorem 1.6.3 Bolzano�Weierstrass . Every bounded infinite subset of
R, the set of real numbers, has at least one limit point.

Note that a limit point of a set B may not belong to B. For example, the
� � 4set Bs 1rn ns1, 2, . . . has a limit point equal to zero, which does not

belong to B. It can be seen here that any neighborhood of 0 contains
infinitely many points of B. In particular, if r is a given positive number, then

Ž .all elements of B of the form 1rn, where n�1rr, belong to N 0 . Fromr
Theorem 1.6.2 it can also be concluded that a finite set cannot have limit
points.



AN INTRODUCTION TO SET THEORY12

Limit points can be used to describe closed sets, as can be seen from the
following theorem.

Theorem 1.6.4. A set B is closed if and only if every limit point of B
belongs to B.

Proof. Suppose that B is closed. Let p be a limit point of B. If p�B,
Ž .then pgB, which is open. Hence, there exists a neighborhood U p of p

Ž .contained inside B by Theorem 1.6.1. This means that U p lBs�, a
Ž .contradiction, since p is a limit point of B see Definition 1.6.7 . Therefore,

p must belong to B. Vice versa, if every limit point of B is in B, then B must
be closed. To show this, let p be any point in B. Then, p is not a limit point

Ž . Ž .of B. Therefore, there exists a neighborhood U p such that U p ;B. This
means that B is open and hence B is closed. �

It should be noted that a set does not have to be either open or closed; if
it is closed, it does not have to be open, and vice versa. Also, a set may be
both open and closed.

� � 4EXAMPLE 1.6.1. Bs x 0�x�1 is an open subset of R, but is not
closed, since both 0 and 1 are limit points of B, but do not belong to it.

� � 4EXAMPLE 1.6.2. Bs x 0FxF1 is closed, but is not open, since any
neighborhood of 0 or 1 is not contained in B.

� � 4EXAMPLE 1.6.3. Bs x 0�xF1 is not open, because any neighborhood
of 1 is not contained in B. It is also not closed, because 0 is a limit point that
does not belong to B.

EXAMPLE 1.6.4. The set R is both open and closed.

EXAMPLE 1.6.5. A finite set is closed because it has no limit points, but is
obviously not open.

Ž .Definition 1.6.8. A subset B of a topological space A, FF is disconnected
if there exist open subsets C and D of A such that BlC and BlD are
disjoint nonempty sets whose union is B. A set is connected if it is not
disconnected. �

'� � 4The set of all rationals Q is disconnected, since x x� 2 lQ and
'� � 4x x� 2 lQ are disjoint nonempty sets whose union is Q. On the other

Ž .hand, all intervals in R open, closed, or half-open are connected.

� 4Definition 1.6.9. A collection of sets B is said to be a co®ering of a set�

� 4A if the union � B contains A. If each B is an open set, then B is� � � �

called an open co®ering.
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Definition 1.6.10. A set A in a topological space is compact if each open
� 4covering B of A has a finite subcovering, that is, there is a finite�

� 4 nsubcollection B , B , . . . , B of B such that A;� B . �� � � � is1 �1 2 n i

The concept of compactness is motivated by the classical Heine�Borel
theorem, which characterizes compact sets in R, the set of real numbers, as
closed and bounded sets.

Ž .Theorem 1.6.5 Heine�Borel . A set B;R is compact if and only if it is
closed and bounded.

Ž .Proof. See, for example, Zaring 1967, Theorem 4.78 . �

Thus, according to the Heine�Borel theorem, every closed and bounded
w xinterval a, b is compact.

1.7. EXAMPLES IN PROBABILITY AND STATISTICS

EXAMPLE 1.7.1. In probability theory, events are considered as subsets in
a sample space �, which consists of all the possible outcomes of an experi-

Ž .ment. A Borel field of events also called a 	-field in � is a collection BB of
events with the following properties:

i. �gBB.
ii. If EgBB, then EgBB, where E is the complement of E.

iii. If E , E , . . . , E , . . . is a countable collection of events in BB, then1 2 n
�� E belongs to BB.is1 i

Ž .The probability of an event E is a number denoted by P E that has the
following properties:

Ž .i. 0FP E F1.
Ž .ii. P � s1.

iii. If E , E , . . . , E , . . . is a countable collection of disjoint events in BB,1 2 n
then

� �

P E s P E .Ž .� Ýi iž /
is1 is1

Ž .By definition, the triple �, BB, P is called a probability space.

EXAMPLE 1.7.2 . A random variable X defined on a probability space
Ž .�, BB, P is a function X : �™A, where A is a nonempty set of real

� � Ž . 4numbers. For any real number x, the set Es 
g� X 
 Fx is an
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element of BB. The probability of the event E is called the cumulative
Ž .distribution function of X and is denoted by F x . In statistics, it is custom-

Ž .ary to write just X instead of X 
 . We thus have

F x sP XFx .Ž . Ž .
This concept can be extended to several random variables: Let X , X , . . . , X1 2 n

� � Ž . 4be n random variables. Define the event A s 
g� X 
 Fx , isi i i
Ž n .1, 2, . . . , n. Then, P � A , which can be expressed asis1 i

F x , x , . . . , x sP X Fx , X Fx , . . . , X Fx ,Ž . Ž .1 2 n 1 1 2 2 n n

is called the joint cumulative distribution function of X , X , . . . , X . In this1 2 n
Ž .case, the n-tuple X , X , . . . , X is said to have a multivariate distribution.1 2 n

A random variable X is said to be discrete, or to have a discrete
distribution, if its range is finite or countable. For example, the binomial
random variable is discrete. It represents the number of successes in a
sequence of n independent trials, in each of which there are two possible
outcomes: success or failure. The probability of success, denoted by p , is then
same in all the trials. Such a sequence of trials is called a Bernoulli sequence.
Thus the possible values of this random variable are 0, 1, . . . , n.

Another example of a discrete random variable is the Poisson, whose
possible values are 0, 1, 2, . . . . It is considered to be the limit of a binomial
random variable as n™� in such a way that np ™��0. Other examples ofn
discrete random variables include the discrete uniform, geometric, hypergeo-

Žmetric, and negative binomial see, for example, Fisz, 1963; Johnson and
.Kotz, 1969; Lindgren 1976; Lloyd, 1980 .

A random variable X is said to be continuous, or to have a continuous
distribution, if its range is an uncountable set, for example, an interval. In

Ž .this case, the cumulative distribution function F x of X is a continuous
Ž .function of x on the set R of all real numbers. If, in addition, F x is

differentiable, then its derivative is called the density function of X. One of
the best-known continuous distributions is the normal. A number of continu-
ous distributions are derived in connection with it, for example, the chi-
squared, F, Rayleigh, and t distributions. Other well-known continuous
distributions include the beta, continuous uniform, exponential, and gamma

Ž .distributions see, for example, Fisz, 1963; Johnson and Kotz, 1970a, b .

Ž .EXAMPLE 1.7.3. Let f x, � denote the density function of a continuous
random variable X, where � represents a set of unknown parameters that
identify the distribution of X. The range of X, which consists of all possible
values of X, is referred to as a population and denoted by P . Any subset ofX
n elements from P forms a sample of size n. This sample is actually anX
element in the Cartesian product P n. Any real-valued function defined onX

n Ž .P is called a statistic. We denote such a function by g X , X , . . . , X ,X 1 2 n
where each X has the same distribution as X. Note that this function is ai
random variable whose values do not depend on � . For example, the sample

n 2 n 2Ž . Ž .mean XsÝ X rn and the sample variance S sÝ X yX r ny1is1 i is1 i
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are statistics. We adopt the convention that whenever a particular sample of
Ž .size n is chosen or observed from P , the elements in that sample areX

written using lowercase letters, for example, x , x , . . . , x . The correspond-1 2 n
Ž .ing value of a statistic is written as g x , x , . . . , x .1 2 n

EXAMPLE 1.7.4. Two random variables, X and Y, are said to be equal in
distribution if they have the same cumulative distribution function. This fact

dis denoted by writing XsY. The same definition applies to random variables
dwith multivariate distributions. We note that s is an equivalence relation,

since it satisfies properties 1, 2, and 3 in Definition 1.3.2. The first two
d dproperties are obviously true. As for property 3, if XsY and YsZ, then

dXsZ, which implies that all three random variables have the same cumula-
tive distribution function. This equivalence relation is useful in nonparamet-

Ž .ric statistics see Randles and Wolfe, 1979 . For example, it can be shown
that if X has a distribution that is symmetric about some number 
, then

dXy
s
yX. Also, if X , X , . . . , X are independent and identically dis-1 2 n
Ž .tributed random variables, and if m , m , . . . , m is any permutation of the1 2 n

dŽ . Ž . Ž .n-tuple 1, 2, . . . , n , then X , X , . . . , X s X , X , . . . , X . In this case,1 2 n m m m1 2 n

we say that the collection of random variables X , X , . . . , X is exchange-1 2 n
able.

EXAMPLE 1.7.5. Consider the problem of testing the null hypothesis H :0
�F� versus the alternative hypothesis H : ��� , where � is some un-0 a 0
known parameter that belongs to a set A. Let T be a statistic used in making
a decision as to whether H should be rejected or not. This statistic is0
appropriately called a test statistic.

Suppose that H is rejected if T� t, where t is some real number. Since0
Ž .the distribution of T depends on � , then the probability P T� t is a

Ž . w xfunction of � , which we denote by � � . Thus � : A™ 0,1 . Let B be a0
� � 4subset of A defined as B s �gA �F� . By definition, the size of the test0 0

Ž .is the least upper bound of the set � B . This probability is denoted by �0
and is also called the level of significance of the test. We thus have

�s sup � � .Ž .
�F� 0

To learn more about the above examples and others, the interested reader
may consider consulting some of the references listed in the annotated
bibliography.
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EXERCISES

In Mathematics

1.1. Verify Results 1.2.3�1.2.12.

1.2. Verify Results 1.2.13�1.2.16.

1.3. Let A, B, and C be sets such that AlB;C and AjC;B. Show
that A and C are disjoint.

Ž . Ž .1.4. Let A, B, and C be sets such that Cs AyB j ByA . The set C is
called the symmetric difference of A and B and is denoted by A�B.
Show that
( )a A^BsAjByAlB
( ) Ž . Ž .b A^ B^D s A^B ^D, where D is any set.
( ) Ž . Ž . Ž .c Al B^D s AlB ^ AlD , where D is any set.

1.5. Let AsJq�Jq, where Jq is the set of positive integers. Define a
Ž . Ž .relation � in A as follows: If m , n and m , n are elements in A,1 1 2 2

Ž . Ž .then m , n � m , n if m n sn m . Show that � is an equivalence1 1 2 2 1 2 1 2
relation and describe its equivalence classes.

1.6. Let A be the same set as in Exercise 1.5. Show that the following
Ž . Ž .relation is an equivalence relation: m , n � m , n if m qn sn1 1 2 2 1 2 1
Ž .qm . Draw the equivalence class of 1, 2 .2

�Ž . Ž . Ž . Ž .41.7. Consider the set As y2,y5 , y1,y3 , 1, 2 , 3, 10 . Show that A
defines a function.

1.8. Let A and B be two sets and f be a function defined on A such that
Ž .f A ;B. If A , A , . . . , A are subsets of A, then show that:1 2 n

( ) Ž n . n Ž .a f � A s� f A .is1 i is1 i
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( ) Ž n . n Ž .b f � A ;� f A .is1 i is1 i

Ž .Under what conditions are the two sides in b equal?

1.9. Prove Corollary 1.4.1.

1.10. Prove Corollary 1.4.2.

� 41.11. Show that the set As 3, 9, 19, 33, 51, 73, . . . is countable.

'1.12. Show that 3 is an irrational number.

' '1.13. Let a, b, c, and d be rational numbers such that aq b scq d .
Then, either
( )a asc, bsd, or
( )b b and d are both squares of rational numbers.

1.14. Let A;R be a nonempty set bounded from below. Define yA to be
� � 4 Ž . Ž .the set yx xgA . Show that inf A sysup yA .

Ž .1.15. Let A;R be a closed and bounded set, and let sup A sb. Show that
bgA.

1.16. Prove Theorem 1.6.2.

Ž .1.17. Let A, FF be a topological space. Show that G;FF is a basis for FF in
and only if for each BgFF and each pgB, there is a UgG such that
pgU;B.

1.18. Show that if A and B are closed sets, then AjB is a closed set.

1.19. Let B;A be a closed subset of a compact set A. Show that B is
compact.

1.20. Is a compact subset of a compact set necessarily closed?

In Statistics

1.21. Let X be a random variable. Consider the following events:

� ynA s 
g� X 
 �xq3 , ns1, 2, . . . ,� 4Ž .n

� ynB s 
g� X 
 Fxy3 , ns1, 2, . . . ,� 4Ž .n

�As 
g� X 
 Fx ,� 4Ž .
�Bs 
g� X 
 �x ,� 4Ž .
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where x is a real number. Show that for any x,
( ) �a � A sA;ns1 n

( ) �b � B sB.ns1 n

Ž .1.22. Let X be a nonnegative random variable such that E X s
 is finite,
Ž .where E X denotes the expected value of X. The following inequal-

ity, known as Marko®’s inequality, is true:



P XGh F ,Ž .
h

where h is any positive number. Consider now a Poisson random
variable with parameter �.
( ) Ž .a Find an upper bound on the probability P XG2 using Markov’s

inequality.
( ) Ž .b Obtain the exact probability value in a , and demonstrate that it is

smaller than the corresponding upper bound in Markov’s inequal-
ity.

1.23. Let X be a random variable whose expected value 
 and variance 	 2

exist. Show that for any positive constants c and k,
( ) Ž � � . 2 2a P Xy
 Gc F	 rc ,
( ) Ž � � . 2b P Xy
 Gk	 F1rk ,
( ) Ž � � . 2c P Xy
 �k	 G1y1rk .
The preceding three inequalities are equivalent versions of the so-called
Chebyshe®’s inequality.

1.24. Let X be a continuous random variable with the density function

� �1y x , y1�x�1,f x sŽ . ½ 0 elsewhere.

By definition, the density function of X is a nonnegative function such
Ž . x Ž . Ž .that F x sH f t dt, where F x is the cumulative distribution func-y�

tion of X.
( )a Apply Markov’s inequality to finding upper bounds on the following

1 1Ž . Ž � � . Ž . Ž � � .probabilities: i P X G ; ii P X � .2 3
1( ) Ž � � .b Compute the exact value of P X G , and compare it against the2

Ž .Ž .upper bound in a i .

1.25. Let X , X , . . . , X be n continuous random variables. Define the1 2 n
random variables X and X asŽ1. Žn.

� 4X s min X , X , . . . , X ,Ž1. 1 2 n
1FiFn

� 4X s max X , X , . . . , X .Žn. 1 2 n
1FiFn
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Show that for any x,
( ) Ž . Ž .a P X Gx sP X Gx, X Gx, . . . , X Gx ,Ž1. 1 2 n

( ) Ž . Ž .b P X Fx sP X Fx, X Fx, . . . , X Fx .Žn. 1 2 n

In particular, if X , X , . . . , X form a sample of size n from a1 2 n
Ž .population with a cumulative distribution function F x , show that

( ) Ž . w Ž .xnc P X Fx s1y 1yF x ,Ž1.

( ) Ž . w Ž .xnd P X Fx s F x .Žn.

The statistics X and X are called the first-order and nth-orderŽ1. Žn.
statistics, respectively.

1.26. Suppose that we have a sample of size ns5 from a population with an
exponential distribution whose density function is

2 ey2 x , x�0,f x sŽ . ½ 0 elsewhere.

Ž .Find the value of P 2FX F3 .Ž1.


